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Abstract. Photonuclear interaction cross-sections from the GEANT4 database are approximated for all nu-
clei and all energies (from the hadron production threshold to about 40 TeV). The approximation methods
in the giant-dipole resonance region, nucleon resonance region, and high-energy region are improved with
respect to existing approximations. As an application of the approximation for photonuclear cross-sections,
an improved method of calculating electronuclear cross-sections is developed. The interaction cross-section
of virtual photons with nuclei at high Q2 are approximated and a simple algorithm for describing the
electronuclear reactions, including high-Q2 scattering, is proposed.

PACS. 25.20.-x Photonuclear reactions – 25.30.Rw Electroproduction reactions – 24.30.-v Resonance
reactions – 21.60.Ka Monte Carlo models

1 Introduction

Reproduction of the photonuclear and electronuclear reac-
tions is very important for the simulation of electromag-
netic showers, as they are the only reactions converting
electromagnetic energy of electrons, positrons, and pho-
tons to hadronic energy of mesons, nuclear fragments,
and soft neutrons. For the simulation of photonuclear and
electronuclear reactions it is necessary to devise a gen-
eral method of approximation of the known experimental
cross-sections over a very wide energy range. The simu-
lation toolkit GEANT4 [1] includes simulation of nuclear
fragmentation in the photonuclear and electronuclear re-
actions on the basis of the CHIPS model [2–4].

A database of the measured γA → hadrons interaction
cross-sections is created in the GEANT4 environment. For
applications it is approximated and extrapolated. The ap-
proximation of the energy dependence of photonuclear
cross-sections is subdivided into three main regions: the
giant-dipole resonance (GDR) region, the nucleon reso-
nance (N∗) region, and the high-energy region. In each of
these regions there are independent methods of approxi-
mation. Most of these methods do not take into account
the tails of contributions from the neighboring regions. In
this paper the general method of approximation for all
nuclei and for all energies above the hadron production
threshold is developed. Hence the emphasis is less on the
physics concepts than on the empirical fitting procedure.
Nevertheless, the general fit can give insight into a few
fundamental effects, such as collective modes of excita-
tion of nuclear giant resonance, “melting” of high nucleon

a e-mail: Mikhail.Kossov@cern.ch

resonances in nuclear matter, and the non-saturated uni-
tarity in the high-energy extrapolation of the photonuclear
cross-sections.

The σγp cross-section, discussed in sect. 2, is funda-
mental for all photonuclear cross-sections. The energy de-
pendence of the σγp cross-sections is the only source of
information for the extrapolation of photonuclear cross-
sections to energies above 1TeV. This is considered in
sect. 3. In the N∗ region, σγp is a starting point for the
analysis of the modification of the nucleon resonances in
the nuclear matter. In this region the ln(E) scale is used
for the approximation of the resonance shape, instead of
the Breit-Wigner formula which uses a linear E scale. The
ln(E) scale was chosen because, on the one hand, it is con-
venient for the integrals necessary for the calculation of
electronuclear interaction cross-sections, and, on the other
hand, because the extrapolation to 40 TeV (as shown in
sect. 3) is described by the ln(E) function. This approxi-
mation procedure in the N∗ region is discussed in sect. 4.

In all three regions the known approximation proce-
dures are improved. In the GDR region the method of
multinucleon excitations is used to fit not only the GDR
maxima of different shapes, but also the cross-sections
in the so-called quasi-deuteron region (between the tra-
ditional GDR region and the ∆-resonance region). The
approximation procedure for the interaction cross-sections
below the pion production threshold is discussed in sect. 5.

In sect. 6 the main emphasis is on the definition of
the photonuclear cross-sections for the virtual photons at
high Q2. Three different approaches are compared: equiv-
alent photons approximation (EPA), transverse photon
flux (TPF), and deep-inelastic scattering (DIS) structure
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Fig. 1. The σγp cross-section. Filled circles correspond to the PDG collection [5], empty circles correspond to the Mainz data [6],
and squares correspond to the HERA data [7]. The dotted line is the Froissart bound ln2(s) approximation, the dashed line is
the non-saturated unitarity ln(s) approximation, the thin solid line is the ln(E) approximation, and the thick solid line is the
resulting GEANT4 approximation (at high energies it coincides with the thin solid and the dashed lines). The dash-dotted line
at low energies shows the approximation based on partial-wave analysis [8].

functions. All the three approaches have different normal-
ization of the photonuclear cross-sections at high Q2. Clar-
ification of this normalization difference is very important
for comparison of experimental measurements, and for de-
velopment of the simulation algorithm. The simple ap-
proximation for the virtual photon interactions with nuclei
is used for simulation of the electronuclear reactions with
high Q2. This method needs further improvement. In the
GDR region an additional Q2-dependent form factor must
be used and at high energies the nuclear shadowing factor
must be changed. Unfortunately the appropriate measure-
ments are not available, so at present this improvement
cannot be made.

2 Interaction of photons with protons

For the analysis of the σγp cross-sections, the PDG data
set [5] is used together with the recent data from Mainz [6]
and HERA [7]. The data are shown in fig. 1. In all figures
of this paper the interaction cross-sections are in units
of mb. The thick solid line shows the final GEANT4 ap-
proximation of the data set. This figure can be used to
illustrate the ln(E) resonance shape and the method of
threshold functions, which are used in the GEANT4 ap-
proximation.

The ln(E) resonance formula is similar to the Breit-
Wigner formula

r(E) =
v

1 + (ln(E)−u)2

w

, (1)

where E is the photon energy in the laboratory system
measured in MeV, v is the amplitude of the resonance, w
is the relative squared half-width of the resonance, and u is
the position of the resonance on the ln(E) scale. The flow
factor E−2 is not used in this approximation so the posi-
tions of resonances are artificially shifted to lower energies.
This formula is used for the ∆-resonance and for the ef-
fective resonance (the sum of a few close resonances at
E ≈ 750MeV). The effective resonances above 900 MeV
for the γp and γd interactions have relatively small am-
plitudes. They are formally approximated by the g4- and
g8-functions defined in sect. 5.

The method of threshold functions is used to restrict
contributions of different interaction mechanisms. For the
σγp cross-sections the tail of the ∆-resonance contribution
must not cover the region below the π0 production thresh-
old. To cut this tail, a threshold function of the form

f(E) = (1 + e(τ−ln(E))·ξ)−1, (2)

is used, where τ is the threshold position and ξ charac-
terizes the slope of the threshold. The threshold functions
are used for the N∗-resonance contributions, so for com-
plex nuclei the tails of the nucleon resonances (defined by
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the widths of resonances) do not contribute to the low-
energy region. For photonuclear cross-sections the pion
production threshold may be A-dependent, as pions can
be produced by interactions with nuclear clusters and the
∆-resonance can decay through the ∆N → NN channel.
Thus, the modification of the threshold position τ(A) in
nuclear matter is possible, as are modifications of the am-
plitude (v(A)), position (u(A)), and width (w(A)) of the
resonances. Another threshold function is used for the arti-
ficial subdivision between the explicit resonance contribu-
tions and the continuous Regge-pole contribution, which
has the s−η form and is usually limited by some minimum
energy.

The threshold function plays a fundamental role in the
approximation in the GDR region. This method of approx-
imation of the photonuclear cross-sections is discussed in
detail in sect. 5. The threshold function smoothly reduces
the contributions of the processes below the threshold. To
make the low-energy cross-section below the hadron pro-
duction threshold go to zero, the simple additional thresh-
old condition (a θ-function, which is 0 below the thresh-
old and 1 above the threshold) is used for the kinemati-
cally defined hadron production threshold. For protons the
hadron production threshold is defined by the π0 mass,
while for nuclei it is defined by the minimum separation
energy.

The only γp interaction mechanism below the π0 pro-
duction threshold is Compton scattering. For a point-like
charged particle with spin 1

2 and zero anomalous mo-
mentum this was calculated by Klein and Nishina [9].
The anomalous magnetic momentum contribution for
the point-like particle was calculated by Powell [10].
The structure of the nucleon was taken into account by
Petrun’kin [11] in the form of the electric and magnetic
polarizabilities ᾱ and β̄. Usually the Compton scatter-
ing on nuclei is not taken into account in the simula-
tion as the cross-section of the γp Compton scattering
is about five orders of magnitude smaller than that for
photon-electron Compton scattering. But Compton scat-
tering by electrons is concentrated at small angles, while
Compton scattering by protons in the 30–130MeV en-
ergy range is almost isotropic and energy independent
( dσ
dΩ ≈ 15 nb/sr) [12]. Therefore Compton scattering by

protons can be important for the simulation of electromag-
netic showers in hydrogen-rich media when large-angle
scattering of photons is important.

3 Photonuclear interactions at high energies

Approximation of σγp and σhp cross-sections at high en-
ergies was made in [13] for the full set of the PDG data.
Two approximation formulas for the Froissart bound [14]
(saturated unitarity) case

S(E) = P · (A + B · ln2(s)) + R · s−η (3)

and for the non-saturated unitarity [15] case

S̄(E) = P · (A + B · ln(s)) + R · s−η (4)

were tested. The η, A, and B parameters obtained in [13]
are common for the approximations of the γp and the
hp interactions. For the different incident particles only
the P and R parameters are different. It was found that
the non-saturated unitarity formula (eq. (4)) is a better
approximation at low energies. In our paper this formula
is improved by the substitution s = 2MpE (Mp is the
proton mass). For this case the approximation formula is

h(E) = a · (ln(E) − c) + b · E−d. (5)

The parameters a, b, c, and d are calculated from pa-
rameters A, B, P , R, and η, so this approximation is
in accordance with the global fit of the hadron-proton
cross-section made in [13]. The dotted line in fig. 1 shows
the Froissart bound approximation (eq. (3)), the dashed
line corresponds to the non-saturated unitarity formula
(eq. (4)), and the thin solid line corresponds to eq. (5).
At high energies the last two obviously coincide with, and
approximate the new HERA measurements much better
than the Froissart bound formula. The thick solid line
shows the resulting GEANT4 approximation of the σγp

cross-sections:

σγp = fr · (r∆ + rH) + g4 + g8 + fp · h(p)
p , (6)

where
fr = (1 + e25·(5.24−z))−1, (7)

r∆ =
0.55

1 + (z−u∆(1))2

w∆(1)

, (8)

u∆(A) = 5.82 − 0.07
1 + 0.003 · A2

, (9)

w∆(A) = 0.056 + ln(A) · (0.03 − 0.001 · ln(A)), (10)

rH =
0.223

1 + (z−6.57)2

wH(1)

, (11)

wH(A) = 0.045 + 0.04 · (ln(A))
3
2 , (12)

g4 =
e4·(6.27−z)

1 + e12·(7.25−z)
, (13)

g8 =
e8·(6.66−z)

1 + e24·(6.9−z)
, (14)

fp = (1 + e4·(7−z))−1, (15)

h(p)
p = 0.0375 · (z − 16.5) + 1.07 · e−0.11·z, (16)

and z = ln(E). There is no GDR maximum for protons,
so the two fake GDR terms g4 and g8 are used to im-
prove the approximation in the high N∗-resonance region
(E > 900MeV). The g-functions are defined in sect. 5.
They were used for the approximation of the high res-
onance contributions to the γp and γd cross-sections to
avoid additional terms in the general A-dependent ap-
proximation formula. It should be noted that the three
A-dependent functions u∆(A), w∆(A), wH(A) and the A-
independent fp-function are defined starting from the hy-
drogen nucleus.



380 The European Physical Journal A

10
-1

1

10

Partovi64
LeviSandri89

Armstrong72
PDG collection
MacCormick96

JENDL

2
H

σ ab
s 

(m
b) Wyckoff65

Bezic69
Burgov63
Ahrens75
Heynen71

Ghedira85
Bianchi96
Michalowski77
Arakelian78
Caldwell79

Muccifora99

LANL
KAERI

JENDL

C

10

10
2

10 102 103 104

Wyckoff65
Gavrilov57

Bianchi96
Michalowski77
Brookes73
Arakelian78
Caldwell79

Muccifora99

KAERI
CNDC

Cu

10 102 103 104

Veyssiere70
Lepretre81

Ghedira85
Bianchi96
Brookes73

Arakelian78
Caldwell79

Muccifora99

LANL
Pb

Eγ (MeV)                                                              

Fig. 2. Photonuclear interaction cross-sections. References to the [16–55,6,56–69] data set are named after the first author
and by the year of publication, the known GDR approximations are from the internationally available computerized library
EXFOR (LANL-USA, BOFODM-Russia, KAERI-S. Korea, JENDL-Japan, CNDC-China). The thick solid line is the GEANT4
approximation. The dashed line is the hp part of the 2H cross-section (without the fp threshold factor) multiplied by A

2
. The

dotted line is the same function, but normalized by the GEANT4 shadowing factor sp(A) (eq. (26)).

In the ∆-resonance region the GEANT4 approxima-
tion is compared with the approximation resulting from
the partial-wave analysis [8] (the curve is taken from [12]),
which underestimates the cross-section above 480MeV.
The two ∆-resonance approximations are different only
at E < 200MeV. Measurements of the σγp cross-sections
in this energy region are not available.

The photonuclear cross-sections are only measured up
to E = 100GeV, so additional assumptions about the
A-dependence of the photonuclear cross-sections must be
used to extrapolate the existing data set to infinite en-
ergies. The general picture of photonuclear cross-sections
is shown in fig. 2 where the GEANT4 approximation is
shown by the thick solid line. If the atomic weight is
not indicated explicitly in the figures the measurements
are done with the natural mixture of isotopes. Unlike
the γp data, the γd data have the well-known photo-
disintegration part, which is a precursor of the GDR max-
ima for complex nuclei. So the γd data are approximated
by an equation similar to eq. (6) with two additional terms
g1 and g2, which correspond to the GDR terms for the
complex nuclei:

σγd = fr(r∆ +rH)+g1 +g2 +g4 +g8 +sp(2)fphp(2), (17)

where
fr = (1 + e25·(τr(2)−z))−1, (18)

τr(A) = 5.13 − 0.00075 · A, (19)

r∆ =
0.88

1 + (z−u∆(2))2

w∆(2)

, (20)

rH =
0.348

1 + (z−6.575)2

wH(2)

, (21)

g1 =
e1·(1.86−z)

1 + e3·(1.2−z)
, (22)

g2 =
e2·(2.11−z)

1 + e6·(1.5−z)
, (23)

g4 =
e4·(6.2−z)

1 + e12·(7.1−z)
, (24)

g8 =
e8·(6.62−z)

1 + e24·(6.91−z)
, (25)

sp(A) = A · (1 − 0.072 · ln(A)), (26)

hp(A) = 0.0375 · (z − 16.5) + sh(A) · e−0.11·z, (27)

sh(A) = 1.0663 − 0.0023 · ln(A). (28)

The g4- and g8- GDR functions are still formally used to
improve approximation in the high-resonance region. The
τr(A) threshold function and the sp(A) shadowing func-
tion are universal for all complex nuclei starting from deu-
terium. The sp(A) function is the only function which nor-
malizes the high-energy photonuclear cross-sections taking
into account the nuclear shadowing effect [70].
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Fig. 3. Photonuclear interaction cross-sections for Al, Ag, Au, and U nuclei. References are the same as in fig. 2.

The high-energy approximation for γd reactions is re-
produced in two forms for C, Cu, and Pb nuclei. The first
form is the γd cross-section multiplied by the A

2 factor
(dashed lines), another form is normalized by the sp(A)
factor (dotted line). Because of the nuclear shadowing,
the high-energy contribution to the photonuclear cross-
sections drops with increasing A, and the upper tails of
the resonance terms make a relatively larger contribution
for heavier nuclei in the 1–10GeV region. That is why
the GEANT4 approximation curve differs from the dot-
ted lines in this region. To compensate for these increas-
ing resonance contributions, and to keep the GEANT4
approximation close to the dotted line up to 40 TeV, it is
necessary to use an additional function sh(A) for shadow-
ing of the Regge-pole contribution. The sh(A) function is
general for all complex nuclei starting from deuterium.

4 Photonuclear interactions in the resonance
region

The resonance part for nuclei heavier than deuterium is
approximated by two contributions: by the ∆-resonance
contribution and by the effective resonance contribu-
tion, which sums the contributions of resonances above
500MeV.

The photonuclear interaction cross-sections in the res-
onance region are shown in fig. 3 and fig. 4. The A-
dependence of the resonance contribution can be approx-
imated by eq. (17) with the following functions:

fr = (1 + e11·(τr(A)−z))−1, (29)

r∆ =
0.39 · A

1 + (z−u∆(A))2

w∆(A)

, (30)

rH =

0.16·A√
ln(A)

1 + (z−uH(A))2

wH(A)

, (31)

uH(A) = 6.496 + 0.042 · ln(A). (32)

For complex nuclei the threshold of the resonance con-
tribution is shifted to lower energies. The most probable
reason for this seems to be the additional ∆N → NN
decay channel for the ∆-resonance in nuclear matter. The
threshold τr(A) was found to decrease linearly with in-
creasing A (eq. (19)). For uranium it is shifted by about
25MeV.

The position of the ∆-resonance maximum (eq. (9)) is
found to be shifted to higher energies for heavy nuclei. For
γp reactions the ∆ maximum is at M = 1212MeV and for
the photon-uranium reactions it is at M = 1229MeV. For
light nuclei this shift is negligible and for heavy nuclei it
is almost constant.

Broadening of the ∆-resonance contribution is char-
acterized by the w∆(A) function (eq. (10)). No shadow-
ing is found in the resonance region. This conclusion con-
firms the rough estimate made in [71]. The logarithmic
A-dependence of the position of the effective resonance
(eq. (32)) and the A-dependence of its width (eq. (12))
are partially determined by the necessary compensation
for the artificial threshold of the high-energy Regge-pole
contribution, and cannot characterize real shift and broad-
ening for the group of resonances.

Comparison of the σγp and the σhp cross-sections with
the photonuclear cross-sections for heavy nuclei shows
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Fig. 4. Photonuclear interaction cross-sections for 7Li, Be, O, and Sn nuclei. References are the same as in fig. 2.
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that the effective resonance at 750MeV is significantly re-
duced (“melted”) for heavy nuclei. The high resonances,
which are described by the g4- and g8-functions for the
hydrogen and deuterium targets, are not seen at all in the
interactions of photons with complex nuclei. To illustrate
the effect of “melting” of resonances, the data for 3He are
shown in fig. 5 together with the normalized GEANT4 ap-
proximation functions for 1H, 2H, C, and Pb nuclei. The
GEANT4 approximation reflects the “melting” effect, but
to simulate the subsequent nuclear fragmentation it is nec-

essary to have a model describing this effect. It would be
very interesting to measure the photonuclear cross-section
on 3He, 4He, 6Li, and 7Li nuclei up to 1.5GeV to discover
the “melting” mechanism for the resonances excited at
photon energies higher than 900MeV.

5 Photonuclear interactions in the GDR
region

Photonuclear interaction cross-sections in the GDR region
are approximated as a sum of four functions which are
defined as

gi =
ei·(ρi−z)

1 + e3i·(τi−z)
, (33)

where i = 1, 2, 4, 8. These functions are powers of 1
E re-

duced by the threshold function at low energies. One can
think of each rescattering of the photon by the nucleon
as adding one power of 1

E to the cross-section. Because of
the binding energy, or Pauli blocking for heavy nuclei, the
amplitude of each rescattering can be equally suppressed,
such that the same power (but multiplied by the factor 3)
appears in the resulting threshold functions. The minimal
set of the powers of the g-functions was determined by the
widths of the measured GDR maxima. This is an empiri-
cal choice of g-functions. The four selected functions allow
us to describe a wide variety of shapes of the GDR max-
ima. The shapes are complicated for light nuclei, while for
heavy nuclei they are close to the traditional Lorentzian
function L(E) ∝ (Γ 2

r + (E2−E2
r)2

E2 )−1.
The lightest nuclei are compared with heavy nuclei in

fig. 6. The relatively big γ-6Li cross-section in compari-
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son to γ-4He and γ-7Li cross-sections at 10MeV (fig. 4)
is noteworthy. Another interesting effect can be found at
100MeV (the so-called quasi-deuteron region), where the
prominent GDR maximum has already dropped and the
energy is still not sufficient to excite the ∆-resonance. Two
measurements [16,54] cover this region for light and heavy
nuclei, respectively. Additional information about this re-
gion can be obtained by the analysis of the 4He data (the
GDR maximum drops steeply), and of the 6Li data (the
pion production threshold drops to a very low level). So
it appears that, for the lightest nuclei, the cross-section in
this region is relatively small.

The rest of the data for medium nuclei are shown in
fig. 7. It is clear from the figure that the experimental
measurements and the existing extrapolations have very
specific systematic errors. That is why it is not only useful
to compare different measurements for the same nucleus,
but also to develop the A-dependent approximation which
can help to suppress the systematic errors when comparing
the measurements for different nuclei. The g1-, g2-, and g4-
functions for the lightest nuclei, and the g8-function for all
the nuclei, have individual values for each nucleus. This
helps to describe such differences as that between the 40Ca
data (fig. 6, where the maximum reaches 100mb) and the
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Fig. 9. A-dependence of the ρ and τ parameters of the g-
functions used for approximation of the photonuclear interac-
tion cross-sections in the GDR region. The dashed lines connect
the subsequent points and the solid and the dash-dotted lines
correspond to eqs. (34)-(41).

40Ar data (fig. 7, where the maximum reaches only 50 mb)
or the anomalous threshold effect for the 19F data.



M.V. Kossov: Approximation of photonuclear interaction cross-sections 385

10

10
2

112Sn
σ ab

s 
(m

b)
  

 

114Sn 116Sn

10

10
2

117Sn 118Sn 119Sn

10

10
2

10 20 30

120Sn

10 20 30

122Sn

10 20 30

124Sn

Eγ (MeV)                                                 

Fig. 10. Photonuclear interaction cross-sections in the GDR region for Sn isotopes. Circles are from [63] and [64], squares are
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The rest of the data for heavy nuclei is shown in
fig. 8. The well-known effect of broadening of the GDR
maximum for the elliptical nuclei is reproduced by the
GEANT4 approximation. This effect is prominent for the
heaviest nuclei and for the nuclei from Sm to W.

The A-dependence of parameters of the gi-functions
is shown in fig. 9. For the approximation of the A-
dependence of the g1 and g2 contributions only those nu-
clei which have measurements in the quasi-deuteron re-
gion (around 100MeV) are selected. Only the g1- and g2-
functions are used to parametrize the GDR maximum for
deuterium, so the “quasi-deuteron” name qualitatively re-
flects the nature of the contribution of these two functions.
With only two exceptions (discussed in a moment) the A-
dependence of these functions is smoothly approximated
by functions:

ρ1 =
3.2 + 0.75 · ln(A)

1 + ( 2
A )4

, (34)

τ1 =
6.6 − 0.5 · ln(A)

1 + ( 2
A )4

, (35)

ρ2 =
4.0 + 0.125 · ln(A)

1 + ( 2
A )4

, (36)

τ2 =
3.4

1 + ( 2
A )4

. (37)

Both the thresholds and the weights of these contribu-
tions appear to grow as a power of A (as ρi and τi are in
exponent), but are sharply reduced by the “A-threshold”

function (1 + ( 2
A )4)−1. The “A-threshold” function is de-

fined by the fourth power of A, and so must be taken into
account only for the lightest nuclei with A < 4. The two
exceptions are the reduced weight of the g1-function for
the 2H nuclei and the reduced weight and threshold of the
g2-function for the 6Li nuclei. The first exception can be
understood as a consequence of the weak binding of nucle-
ons in the 2H nuclei. To understand the second exception
for the 6Li nuclei it is necessary to take into account that
when the first nucleon is knocked out the residual 5He or
5Li nucleus is unstable, so the threshold for the second
separation is negative.

The g4 and g8 terms do not contribute to the cross-
sections for the nuclei with A < 4, so the corresponding
approximation functions are much simpler:

ρ4 = 3.8 + 0.05 · ln(A), (38)

τ4 = 3.8 − .25 · ln(A), (39)

ρ8 = 3.65 − 0.05 · ln(A), (40)

τ8 = 3.5 + 0.16 · ln(A). (41)

From fig. 9 it is clear that when A is comparable with
the value of the index of the g-function, it is necessary to
use individual approximation of the ρi(A) and τi(A) func-
tions. The coefficients of the g8-functions are less regular
than those of other g-functions because the g8 contribu-
tion is narrow and very sensitive to the systematic er-
rors of measurements using the variable bin Penfold-Leiss
method [72], which usually demands subsequent smooth-
ing. This smoothing was not always done as a number of
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older theoretical papers predicted narrow maxima in the
GDR region.

Two minima are noteworthy: the minimum in the A-
dependence of the g4-function for 7Li and the minimum in
the A-dependence of the g8-function for 19F. The nature
of these dips is not clear.

To estimate the isotopic dependence of the GDR max-
imum the isotopes of Sn are compared to the GEANT4
approximation in fig. 10. The approximation is good for
all nine isotopes, so there is no special isotopic dependence
for heavy nuclei. Nevertheless the big difference between
the 40Ar and the 40Ca data proves that, for the medium
and light nuclei, such a dependence can occur.

The expansion over gi-functions can be applied to
other reactions where the GDR is excited. An example
of such process is a A(e, e′p) reaction, when the residual
(A− 1) nucleus can be in the GDR final state. The latest
Jefferson Laboratory data [73] for the 16O(e, e′p) reaction
(|θpq| = 8◦) is shown in fig. 11(a). Unfortunately the differ-
ential cross-sections are presented in the peEeppEpdσ6

d3ped3pp
form

instead of the simple relativistically invariant EeEpdσ6

d3ped3pp

form, but even the published points show that the gi con-
tributions with large i are shifted to lower energies when
compared with the γA reactions. The reason for this may
be the “one-hole” nature of the effect. The “hole” is left
when a proton is knocked out. The contributions of g-
functions with small i correspond to the s-shell holes, and
the contributions of g-functions with large i correspond to
the p-shell holes, having more nucleons in their vicinity.
The “hole” in the p-shell (or higher shells) can be made
with a much smaller energy transfer. For γA reactions,
when the momentum transferred to the excited nucleus
is as large as the transferred energy, this explanation no
longer applies.

Another reaction is the nuclear GDR excitation in
heavy-ion collisions. The data of the LAND collabora-
tion [74] for the 136Xe projectile excitation by a 207Pb
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Fig. 11. Photonuclear interaction cross-sections in the
GDR approximation formula to (a) 16O(e, e′p) reactions [73],
(b) Xe + Pb → Xe∗ + Pb reaction [74].

target are shown in fig. 11(b) together with the gi fit. In
[74] the same data were analysed in terms of the isoscalar
giant-monopole resonance, isovector giant-dipole reso-
nance, and isoscalar quadruple resonance, which can be
compared with the g1-, g2-, and g4-functions. To describe
this data the authors consider the fourth, the so-called
“Double GDR” term, which corresponds to the g8 term of
our approximation. In reactions of this kind the contribu-
tions of the gi-functions with large i seem to be shifted to
higher energies (this is natural because of the large value
of the charge product zZ for such contributions). For reac-
tions of this type the transferred momentum is very large,
so at high transferred energy the large transferred mo-
mentum is more likely to be absorbed by bigger nuclear
clusters than by only one or two nucleons. This may ex-
plain the shift of the gi contributions. From the point of
view of the transferred momentum, the γA reactions lie
between the “knock out” reactions and the heavy-ion ex-
citation reactions. The common nature of all three effects
helps to highlight the mechanism of GDR excitation.

6 Application of photonuclear cross-sections
to electronuclear reactions

Electronuclear reactions are so closely connected with
photonuclear reactions that sometimes they are called
“photonuclear” because the one-photon exchange mech-
anism dominates in electronuclear reactions. In this sense
electrons can be substituted by the flux of equivalent pho-
tons. This is not completely true, as at high energies the
Vector Dominance Model (VDM) or diffractive mecha-
nisms are possible, but these types of reactions are beyond
the scope of this paper.

6.1 Common notation for different approaches to the
electronuclear reactions

The equivalent photon approximation (EPA) was pro-
posed by E. Fermi [75] and developed by C. Weizsacker
and E. Williams [76] and by L. Landau and E. Lifshitz [77].
The covariant form of the EPA method was developed
in [78] and [79]. When using this method it is necessary
to take into account that real photons are always trans-
versely polarized while virtual photons may be longitudi-
nally polarized. In general the differential cross-section of
the electronuclear interaction can be written as

d2σ

dydQ2
=

α

πQ2
(STL · (σT + σL) − SL · σL). (42)

In earlier papers the authors of the EPA method em-
phasized that the main photon flux is concentrated at
small Q2, and tried to limit the method by the region
where transverse equivalent photons dominate (small y
and small Q2). In later calculations the cross-section of the
interaction of longitudinal photons (σL) was postulated
to be negligible and with this assumption the method was
generalized for any y and Q2. It was a good assumption for
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the application of the equivalent photon method to e+e−
reactions where the γγ interactions at high energies were
calculated [80,81]. The electronuclear process was consid-
ered in these papers as a “connected” process with the
following expressions for the STL and SL functions [81]:

SEPA
TL = y∗

1 − y + y2

2 + Q2

4E2 − m2
e

Q2

(
y2 + Q2

E2

)
y2 + Q2

E2

, (43)

SEPA
L =

y∗

2

(
1 − 2m2

e

Q2

)
, (44)

where y∗ =
√

y2 + Q2

E2 . As for the cross-sections, it was
proposed in [81] to use σL = 0 for all Q2,

σT = νσγ(ν)Ey∗ (45)

for Q2 < m2
ρ, and σT = 0 for Q2 > m2

ρ. But experi-
mentally R = σL

σT
is approximately 0.33 at Q2 = m2

ρ [82]
and then slowly drops to about 0.2 at Q2 = 10GeV2.
The R1998 fit can be found in [83]. In addition, at large
Q2, the σγ(ν) cross-section must be substituted by the
σγ(K) value, where K = W 2−M2

2M = ν(1 − x) is the mo-
mentum of the real photon corresponding to the same
W 2 = M2 + 2MK = M2 + 2Mν − Q2 as for the virtual
photon. For example, for Q2 close to zero at ν � 300MeV
the σγ∗p cross-section reaches the maximum value (about
0.5 mb), and for virtual photons with Q2 = 0.28GeV2

and ν = 300MeV the cross-section is zero as it is below
the pion production threshold.

In electronuclear physics another approach proposed
by L. Hand [84] is popular. This approach is based on the
transverse photon flux (TPF) definition. The longitudinal
photon flux is considered only via the ε parameter, which
is the ratio of the flux of longitudinal photons to that of
transverse photons. The ε parameter is calculated as

ε = 1 − 2(ν2 + Q2)
(2E − ν)2 + ν2 + Q2

, (46)

where ν = E − E′ is the photon energy. The differential
cross-section of the electronuclear scattering can be writ-
ten as

d2σ

dΩdE′ = ΓT · (σT + ε · σL), (47)

ΓT =
α

2π2

K

Q2

E′

E

1
1 − ε

, (48)

which gives in terms of eq. (42)

STPF
TL = y(1 − x)

1 − y + y2

2 + Q2

4E2

y2 + Q2

E2

, (49)

STPF
L =

y

2
(1 − x). (50)

Comparison with eqs. (43),(44) shows that, even at
Q2

ν2 → 0 and m2
e

Q2 → 0, the Hand formula differs by the fac-

tor (1−x) (where x = Q2

2Mν ). Nevertheless, in the Q2 → 0

limit it coincides with the EPA calculations. The TPF ap-
proach has a natural normalization for the cross-section
for interaction of the virtual photon with a nucleus. It is
defined as

σγ∗ = σT + ε · σL. (51)

The third approach is developed for the analysis of
deep-inelastic scattering (DIS) reactions. It is based on
a consideration of the F1 and F2 structure functions cal-
culated in the framework of the parton model. The DIS
formula for the differential cross-section of the electronu-
clear interaction [5] is

d2σ

dxdy
=

4πα2

Q2

(
1 − y

xy
F2 + yF1 − xy

M2

Q2
F2

)
. (52)

For small Q2, when the m2
e

Q2 factor must be taken into ac-
count, the differential cross-section is calculated in [85] as

yd2σ

dydQ2
=

4πα2

Q4

[(
1−y− Q2

4E2

)
F2+

(
1− 2m2

e

Q2

)
xy2F1

]
,

(53)
where

F1 =
Mν

4π2α

(
σT +

Q2

ν2
(σT + σL)

)
, (54)

F2 =
Q2

4π2α
(σT + σL). (55)

Substituting eqs. (54),(55) into eq. (53) it is easy to show
that

SDIS
TL =

1 − y + y2

2 + Q2

4E2 − m2
e

Q2

(
y2 + Q2

E2

)
y

, (56)

SDIS
L =

y

2

(
1 − 2m2

e

Q2

)
. (57)

These terms coincide with eqs. (43),(44) in the Q2

ν2 → 0
limit. It is important to point out that in DIS (based
on the light cone approach) the y value is defined as
yDIS = 1 − E′

E cos θ = y + Q2

2E2 . The usual DIS assump-
tion is yDIS = y, so all the terms proportional to Q2

2E2

must be considered to be negligible in the DIS formulas
otherwise the definition of y is unclear. In this sense the
final DIS formula for m2

e � Q2 � ν2 can be simplified to

xyd2σ

dxdy
=

4πα2

Q2

(
(1 − y)F2 + y2xF1

)
, (58)

with F1 = Mν
4πα2 σT and F2 = Q2

4πα2 (σT + σL).
To take into account the mass of the electron at low

Q2 where the electronuclear cross-section is very large, the
ε and the ΓT parameters of the TPF approach must be
redefined as

ε = 1 −
2(ν2 + Q2)

(
1 − 2m2

e

Q2

)
(2E − ν)2 + (ν2 + Q2)

(
1 − 4m2

e

Q2

) , (59)
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ΓT =
α

2π2

K

Q2

E′

E

1 − 2m2
e

Q2

1 − ε
. (60)

This transforms the TPF eqs. (49),(50) to

STPF
TL = y(1−x)

1 − y + y2

2 + Q2

4E2 − m2
e

Q2

(
y2 + Q2

E2

)
y2 + Q2

E2

, (61)

STPF
L =

y

2

(
1 − 2m2

e

Q2

)
(1 − x). (62)

For simplicity, in all calculations shown here the universal
STL and SL functions are used in the form

STL = y
1 − y + y2

2 + Q2

4E2 − m2
e

Q2

(
y2 + Q2

E2

)
y2 + Q2

E2

, (63)

SL =
y

2

(
1 − 2m2

e

Q2

)
. (64)

In fact, because of eq. (45) the authors of [81] end up with
the same normalization of the cross-section. The normal-
ization of the cross-section defined by eqs. (63),(64) co-
incides with the normalization by eqs. (56),(57) in the
DIS y � Q2

2E2 limit. The normalization of the TPF cross-
sections differs only by the (1− x) factor which is used in
the σγ∗p approximation below. Using eq. (51) the differ-
ential cross-section of the electronuclear scattering can be
written as

d2σeA

dydQ2
=

αy

πQ2

(
(1 − y

2 )2

y2 + Q2

E2

+
1
4
− m2

e

Q2

)
σγ∗A, (65)

where σγ∗A = σγA(ν) for small Q2 and must be approx-
imated as a function of ε, ν, and Q2 for large Q2. Inter-
actions of longitudinal photons are included in the effec-
tive σγ∗A cross-section through the ε factor, defined by
eq. (59).

6.2 Approximation of the Q2-dependence of
electronuclear reactions

The electronuclear problem, in the sense of interaction of
virtual photons with nuclei, can thus be split into two.
At small Q2 it is possible to use the σγ(ν) cross-section.
In the Q2 � m2

e region it is necessary to calculate the
effective σγ∗(ε, ν,Q2) cross-section.

Following the EPA notation the differential cross-
section of electronuclear scattering can be connected with
the number of equivalent photons dn = dσ

σγ∗ . For y � 1
and Q2 < 4m2

e the canonical method [86] leads to the
simple result

ydn(y)
dy

= −2α

π
ln(y). (66)

In [81] the integration over Q2 for ν2 � Q2
max � m2

e

leads to

ydn(y)
dy

= −α

π

(
1 + (1 − y)2

2
ln

(
y2

1 − y

)
+ (1 − y)

)
.

(67)
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Fig. 12. Relative contribution of equivalent photons with
small Q2 to the total “photon flux” for 1 GeV electrons (a)
and 10GeV electrons (b). In figures (c) and (d) the equivalent
photon distribution dn(ν, Q2) is multiplied by the photonu-
clear cross-section σγ∗(K, Q2) and integrated over Q2 in two
regions: the dashed lines are integrals over the low-Q2 equiv-
alent photons (under the dashed line in the first two figures),
and the solid lines are integrals over the high-Q2 equivalent
photons (above the dashed lines in the first two figures).

In the y � 1 limit this formula converges to eq. (66).
But the correspondence with eq. (66) can be made more
explicit if the exact integral

ydn(y)
dy

=
α

π

(
1 + (1 − y)2

2
l1 − (1 − y)l2 − (2 − y)2

4
l3

)
,

(68)
where l1 = ln

(
Q2

max
Q2

min

)
, l2 = 1 − Q2

max
Q2

min
, l3 =

ln
(

y2+Q2
max/E2

y2+Q2
min/E2

)
, Q2

min = m2
ey2

1−y , is calculated for

Q2
max(me) =

4m2
e

1 − y
. (69)

(the (1 − y) factor is arbitrary used to keep Q2
max(me) >

Q2
min), which can be considered as a boundary between the

low and the high-Q2 regions. The full transverse photon
flux can be calculated as an integral of eq. (68) with the
maximum possible upper limit

Q2
max(max) = 4E2(1 − y). (70)

The full transverse photon flux can be approximated by

ydn(y)
dy

= −2α

π

(
(2 − y)2 + y2

2
ln(γ) − 1

)
, (71)

where γ = E
me

. It must be pointed out that neither this
approximation nor eq. (68) work at y � 1, as at this point
Q2

max(max) becomes smaller than Q2
min. The formal limit

of the method is y < 1 − 1
2γ .

In fig. 12(a),(b) the energy distribution for the equiv-
alent photons is shown. The low-Q2 photon flux with the
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upper limit defined by eq. (69)) is compared with the full
photon flux. The low-Q2 photon flux is calculated using
eq. (66) (the dashed lines) and using eq. (68) ( the dotted
lines). The full photon flux is calculated using eq. (71) (the
solid lines) and using eq. (68) with the upper limit defined
by eq. (70) (the dash-dotted lines, which differ from the
solid lines only at ν ≈ Ee). The conclusion is that to cal-
culate either the number of low-Q2 equivalent photons or
the total number of equivalent photons one can use the
simple approximations given by eq. (66) and eq. (71), re-
spectively, instead of using eq. (68), which cannot be inte-
grated over y analytically. Comparing the low-Q2 photon
flux and the total photon flux it is possible to show that
the low-Q2 photon flux is about half of the total. From
the interaction point of view the decrease of σγ∗ with in-
creasing Q2 must be taken into account. The cross-section
reduction for the virtual photons with large Q2 is governed
by two factors. First, the cross-section drops with Q2 as a
squared dipole nucleonic form factor

G2
D(Q2) ≈

(
1 +

Q2

(843MeV)2

)−2

. (72)

Second, all the thresholds of the γA reactions are shifted
to higher ν by a factor Q2

2M , which is the difference between
the K and ν values. Following the method proposed in [87]
the σγ∗ at large Q2 can be approximated as

σγ∗ = (1 − x)σγ(K)G2
D(Q2)eb(ε,K)·r+c(ε,K)·r3

, (73)

where r = 1
2 ln(Q2+ν2

K2 ). The ε-dependence of the a(ε,K)
and b(ε,K) functions is weak, so for simplicity the b(K)
and c(K) functions are averaged over ε. They can be ap-
proximated as

b(K) ≈
(

K

185MeV

)0.85

, (74)

c(K) ≈ −
(

K

1390MeV

)3

. (75)

As the [87] approximation is made in the TPF normaliza-
tion, it must be corrected by a (1 − x) factor. At large
Q2 the nuclear shadowing function sp(A) expressed in
eq. (27), which was used for the approximations of the
photonuclear cross-section, can converge to 1 with increas-
ing Q2 as the shadowing effect seems to be smaller for vir-
tual photons [88], but at present this effect is not well mea-
sured. The low energy nature of the GDR effects proves
that the additional form factor must be used for σγ∗ in
the GDR region, but this effect is also unmeasured. Nei-
ther effect is implemented in the GEANT4 simulation of
electronuclear reactions.

An alternative method for approximating σγ∗ , which
uses the nuclear structure functions for the cross-section
approximation, can be found in [89], but at small K
this method is inappropriate as it is correct only in the
sense of the Bloom-Gilman duality [90], in that it de-
scribes only the mean cross-section instead of the reso-
nance shape of the cross-section. It is appropriate only

for K > 1260MeV. Other methods for approximating σγ∗

can be found in [85].
The result of the integration of the photon flux mul-

tiplied by the cross-section approximated by eq. (73) is
shown in fig. 12(c,d). The integrated cross-sections are
shown separately for the low-Q2 region (Q2 < Q2

max(me),
dashed lines) and for the high-Q2 region (Q2 > Q2

max(me),
solid lines). These functions must be integrated over ln(ν),
so it is clear that because of the GDR contribution the low-
Q2 part covers more than half of the total eA → hadrons
cross-section. But at ν > 200MeV, where the multiplicity
of hadrons increases, the large Q2 part dominates. In this
sense, for the better simulation of the hadronic production
by electrons it is necessary to simulate the high-Q2 part
as well as the low-Q2 part.

6.3 Randomization of electronuclear reactions

The low-Q2 equivalent photons have already been imple-
mented in GEANT4 on the basis of eq. (66). The elec-
tronuclear cross-section is calculated as

πσeA

2α
= ln(Ee) · I1(Ee) − I2(Ee), (76)

I1(E) =

E∫
σγA(ν)d ln(ν), (77)

I2(E) =

E∫
ln(ν)σγA(ν)d ln(ν), (78)

where the integration is done from the threshold of the γA
reaction (Ee is the electron energy). The integral functions
I1(x) and I2(x) are calculated for 14 nuclei and the A-
dependence is interpolated. Using these integral functions
the particular eA interaction cross-section is calculated
for the fixed Ee of the incident electron. After the cross-
section has been calculated, the value of ln(Ee) · I1(Ee)−
I2(Ee) is known and can be used for the randomization
of the equivalent photon energy ν, which can be obtained
from the equation

ln(ν) · I1(ν)− I2(ν) = R · (ln(Ee) · I1(Ee)− I2(Ee)), (79)

where R is a random number (0 < R < 1).
Using the same approach, but taking into account

the contribution of high-Q2 photons it is possible to use
eq. (71) with the overestimated σγ∗A = σγA(ν) cross-
section. Then the slightly overestimated electronuclear
cross-section is calculated as

σ∗
eA = (2 ln(γ) − 1) · J1 − ln(γ)

Ee

(
2J2 − J3

Ee

)
, (80)

where

J1(Ee) =
α

π

∫ Ee

σγA(ν)d ln(ν), (81)

J2(Ee) =
α

π

∫ Ee

νσγA(ν)d ln(ν), (82)
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Fig. 13. Integrals of Q2 spectra of virtual photons for three energies 10 MeV, 100 MeV, and 1 GeV at y = 0.001, y = 0.5, and
y = 0.95. The solid line corresponds to eq. (68) and the dashed line (which almost everywhere coincides with the solid line)
corresponds to eq. (68).

J3(Ee) =
α

π

∫ Ee

ν2σγA(ν)d ln(ν). (83)

Similarly to eq. (79), the equivalent photon energy ν = yE
can be obtained for the particular random number R from
the equation

R =
(2 ln(γ) − 1)J1(ν) − ln(γ)

Ee

(
2J2(ν) − J3(ν)

Ee

)
(2 ln(γ) − 1)J1(Ee) − ln(γ)

Ee

(
2J2(Ee) − J3(Ee)

Ee

) .

(84)
Equation (68) is too complicated for the randomization
of Q2 but there is an easily randomized formula which
approximates eq. (68) above the hadronic threshold (E >
10MeV)

π

αD(y)

∫ Q2

Q2
min

ydn(y,Q2)
dydQ2

dQ2 = −L(y,Q2) − U(y), (85)

where

D(y) = 1 − y +
y2

2
, (86)

L(y,Q2) = ln

(
F (y) +

(
eP (y) − 1 +

Q2

Q2
min

)−1
)

, (87)

F (y) =
(2 − y)(2 − 2y)

y2
· Q2

min

Q2
max

, (88)

U(y) = P (y) ·
(

1 − Q2
min

Q2
max

)
, (89)

P (y) =
1 − y

D(y)
. (90)

The Q2 value can then be calculated as

Q2

Q2
min

= 1 − eP (y) +
(
eR·L(y,Q2

max)−(1−R)·U(y) − F (y)
)−1

,

(91)
where R is a random number. In fig. 13, eq. (68) (the solid
curve) is compared to eq. (85) (the dashed curve). As the
two curves are almost indistinguishable in the figure, it can
be used for the illustration of the Q2 spectrum of virtual
photons, which is a derivative of these curves. An alter-
native approach is to use eq. (68) for the randomization
with a three-dimensional table ydn

dy (Q2, y, Ee).
After the ν and Q2 values have been found, the value

of σγ∗A(ν,Q2) is calculated using eq. (73). If R ·σγA(ν) >
σγ∗A(ν,Q2), no interaction occurs and the electron keeps
going. This “do nothing” process has low probability and
cannot shadow other processes.

7 Conclusion

The photonuclear cross-sections are approximated for any
energy and for any nucleus but there can still be individ-
ual effects for particular nuclei. It is very interesting to
measure the photonuclear cross-sections in the GDR re-
gion for 3He, 10B, and 11B nuclei, which are expected to
be anomalous. Measurements for the same nuclei together
with measurements for 6Li in the resonance region and at
high energies can clarify how the high resonances “melt”
in nuclei with increasing A.

The new approach to the GDR approximation must
be tested experimentally and interpreted theoretically. If
the A-dependent gi contributions are understood theoret-
ically or in the framework of some model, it can help to
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calculate the residual nucleus excitation in the “knock-
out” electronuclear reactions. This is very important for
the simulation of electronuclear reactions.

Electronuclear reactions are not exhaustively covered
in this paper. But the reminder (elastic and quasielastic
reactions on nuclei) is not connected with photonuclear
cross-sections. Some basic ideas concerning this issue can
be found in Stein’s paper [84]. The most up-to-date anal-
ysis for the quasielastic reactions is beyond the scope of
this paper, but it is very important to include these re-
actions in the simulation because, as was demonstrated
in [4], the quasielastic “knock out” reactions can be suc-
cessfully simulated by the CHIPS model.

The solution found for the simulation of the high-Q2

part of electronuclear reactions is good enough for the
GEANT4 simulation, which must be fast and easily ran-
domized. But the simulation method must be compared
with at least one point of the σeA→hadrons cross-section,
which unfortunately has not been found in published pa-
pers. Only empirical integrations of the differential cross-
sections of (e, p) [91] and (e, π+) [92] reactions exist.

Another possible application of this method is in
muon-nuclear reactions. At present muon-nuclear reac-
tions are implemented in GEANT4 for high energies
(Eµ > 10GeV) and large ν (y > 0.01, ν > mπ). Simu-
lation of muon-nuclear reactions for relatively large Q2 is
necessary, as muons are deeply penetrating particles and
the scattering of muons, even at relatively small angles, is
very important. The method developed in this paper can
be used to improve this simulation.
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